На правах рукописи

4

ЧЕРНИКОВ РОМАН ВАЛЕРЬЕВИЧ

ВЗАИМОСВЯЗЬ ЛОКАЛЬНОЙ ЭЛЕКТРОННОЙ И ЛОКАЛЬНОЙ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ В СОЕДИНЕНИЯХ С ПРОМЕЖУТОЧНОЙ ВАЛЕНТНОСТЬЮ

01 04 07 - физика конденсированного состояния

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

Автор Ц

Москва 2008

Работа выполнена в Московском инженерно-физическом институте (государственном университете)

Научный руководитель	доктор физико-математических наук, профессор					
	Менушенков Алексей Павлович					
Официальные оппоненты	доктор научный Паршин I доктор фи кафедры Троян Ви	физико-мат сотрудник Петр Петрова изико-матема молекулярно ктор Иванов	темати РНЦ ич атичес ой физ	ческих «Курча ких наук ики МИС	наук, товский <, профес ФИ	ведущий институт» cop

Ведущая организация Институт кристаллографии Российской Академии Наук

Защита состоится «18» июня 2008 г в 16 ч 00 мин на заседании диссертационного совета Д 212 130 06 в Московском инженерно-физическом институте (государственном университете) по адресу 115409, г Москва, Каширское шоссе, д 31, конференц-зал К-608

С диссертацией можно ознакомиться в научной библиотеке МИФИ

Отзывы направлять по адресу 115409, г Москва, Каширское шоссе, д 31, диссертационный совет Д 212 130 06

Автореферат разослан «<u>15</u>» мая 2008 г

Ученый секретарь диссертационного совета, доктор физико-математических наук, профессор

Яковлев В П

Общая характеристика работы

<u>Актуальность работы</u> Вещества, в которых наблюдается состояние с промежуточной валентностью (ПВ), уже долгое время привлекают к себе внимание исследователей, благодаря своим уникальным характеристикам Любое внешнее воздействие, такое как изменение давления или температуры, как правило, приводит к резкому изменению их электронных и решеточных свойств [1] «Пограничная» природа ПВ состояния, когда электроны *f*-оболочки проявляют одновременно локализованный и коллективизированный характер, позволяет наблюдать квантовые эффекты на макроскопическом уровне

Состояние с промежуточной валентностью реализуется, когда близкими по энергии оказываются конфигурации с разным количеством *f*-электронов на атом При этом происходит гибридизация локализованных *f*-уровней и состояний в зоне проводимости Из-за взаимного влияния зонных эффектов и особенностей локализованных состояний промежуточновалентные соединения проявляют аномалии практически в любой экспериментально измеряемой характеристике, например коэффициентах теплового расширения и удельной теплоемкости, магнитной восприимчивости, в кинетических характеристиках, транспортных свойствах Помимо этого, состояния с промежуточной валентностью при определенных условиях могут оказывать влияние на спектр колебаний решетки за счет динамического перераспределения электронной плотности [2]

В ряде случаев появление промежуточновалентного состояния может являться результатом электронного фазового перехода, причем переход может сопровождаться изменением электрических (металл - диэлектрик), магнитных (магнитное - немагнитное состояние) и решеточных свойств (скачкообразное изменение параметра решетки, в некоторых случаях изменение симметрии) [3]

С момента открытия соединений с промежуточной валентностью прошло уже более 35 лет, однако единая теория, позволяющая описать все многообразие их свойств, до сих пор не создана Помимо чисто теоретического интереса к ПВ состоянию как к таковому, существует много областей, где подобные соединения находят широкое практическое применение, например в системах хранения информации [4], а также в качестве преобразователей тепловой энергии [5] или эффективных катализаторов [6]

В силу специфики ПВ состояния, носящего преимущественно локальный характер, исследование промежуточновалентных соединений при помощи интегральных методов, например, рентгеновской дифракции или рассеяния нейтронов, зачастую оставляет много вопросов В этом плане неоспоримым преимуществом обладают методы исследования локальной электронной и атомной структуры, такие как рентгеновская спектроскопия

поглощения (XAFS-спектроскопия) Высокая селективность метода XAFSспектроскопии, позволяющая изучать локальное окружение выделенного элемента в сложных соединениях, а также возможность одновременного исследования как электронных, так и решеточных свойств делают его незаменимым инструментом для анализа промежуточновалентного состояния Кроме того, высокое временное разрешение (время возбуждения фотоэлектрона рентгеновским квантом составляет менее 10^{15} с) открывает возможности, недоступные другим «локальным» методам, например мессбауэровской спектроскопии, характерное временное разрешение которой не превышает 10^9 с

<u>Пель работы</u> Экспериментальное исследование особенностей локальной кристаллической структуры промежуточновалентных соединений CeN₁, EuCu₂Sl₂ и Sm_{1 x}Y_xS, а также валентного состояния редкоземельных ионов Ce, Eu и Sm в этих соединениях методами рентгеновской спектроскопии поглощения (EXAFS и XANES) с использованием синхротронного излучения Особое внимание уделяется изучению взаимосвязи локальных электронных и решеточных свойств указанных соединений в зависимости от допирования и изменения температуры

Научная повизна

1 Методом EXAFS-спектроскопии выше L_{III}-Sm и K-Y краев поглощения исследованы особенности кристаллического окружения самария локального И иттрия в промежуточновалентном соединении Sm_{1-x}Y_xS в температурном интервале 20-300 К для четырех составов (x=0 17, 0 25, 0 33, 0 45) Определены длины связей Sm-S, Sm-Sm, Y-S, Y-Sm (Sm-Y), Y-Y, а также значения факторов Дебая-Валлера для этих связей Обнаружена существенная локальная деформация кристаллической решетки, возникающая вследствие замещения самария ионами иттрия меньшего радиуса

2 Методом XANES спектроскопии исследована зависимость валентности самария от температуры и допирования в $Sm_{1x}Y_xS$ Обнаружено, что с ростом температуры от 20 до 300 К валентность самария растет в каждом из исследованных составов При комнатной температуре увеличение допирования также приводит к росту валентности, однако при 20 К монотонность данной зависимости нарушается

3 Разработан метод оценки и определены значения энергетической ширины f-уровня Sm Γ_f и его глубины залегания ΔE_f на основе данных о температурной динамике валентности в Sm_{1 x}Y_xS Расчеты проведены в рамках предположения о связи роста валентности с температурным уширением уровня Ферми

4 Методом EXAFS-спектроскопии выше L_{III}-Eu и K-Cu краев поглощения определены параметры локального кристаллического окружения европия и меди в промежуточновалентном соединении EuCu₂Si₂ Обнаружено, что степень статического разупорядочения в подрешетке меди превышает масштаб расширения кристаллической решетки, связанного с увеличением ионного радиуса европия при росте температуры

5 В результате сопоставления данных L_{III} -Eu EXAFS и XANES в EuCu₂Si₂ и L_{III} -Sm EXAFS и XANES в Sm_{1 x}Y_xS получено прямое независимое доказательство существования однородного ПВ состояния в указанных соединениях

6 Методом L_{III} -Се XANES-спектроскопии определена температурная зависимость валентности церия в CeNi в интервале 20-300 К Для оценки валентности применен метод расчета валентного стандарта из первых принципов в программе FEFF8 Обнаружено, что изменение геометрии локального окружения церия приводит к появлению особенности на L_{III} -Ce³⁺ XANES спектре в области L_{III} -Ce⁴⁺ края поглошения из-за влияния эффектов многократного рассеяния Это позволило уточнить как абсолютное значение валентности, так и ход ее температурной зависимости

На защиту выносятся следующие положения

 Результаты экспериментального исследования валентного состояние церия в CeNi методом XANES-спектроскопии

2 Результаты экспериментального исследования валентного состояния европия и локальной кристаллической структуры EuCu₂Si₂ методами XANES и EXAFS спектроскопии

3 XANES-исследования валентности самария в Sm_{1 x}Y_xS (x=0.17, 0.25, 0.33, 0.45) в зависимости от температуры (в интервале 20-300К) и допирования иттрием

4 Результаты экспериментального исследования параметров локальной кристаллической структуры промежуточновалентного соединения $Sm_{1,x}Y_xS$ методом EXAFS-спектроскопии

5 Результаты совместного анализа данных EXAFS- и XANES- спектроскопии в Sm_{1-x}Y_xS - установление корреляции между локальными кристаллическими и электронными свойствами соединения

Практическая ценность работы Полученные в диссертационной работе результаты способствуют дальнейшему развитию представлений о природе промежуточновалентного состояния Кроме того, предложенные в данной работе методы могут быть использованы для идентификации однородного ПВ состояния в других ПВ соединениях, а также для

расчета параметров их электронной структуры

Апробация работы. Основные результаты работы были представлены на XIV, XV и XVI Международных конференциях по использованию синхротронного излучения (Новосибирск, 2002, 2004, 2006 г), Научных сессиях МИФИ 2003, 2005, 2006, 12-й и 13-й Международных конференциях по рентгеновской спектроскопии поглощения (Мальме, Швеция, 2003 г, Стэнфорд, США, 2006 г), IV и V Национальных конференциях по применению рентгеновского, синхротронного излучений, нейтронов и электронов для исследования материалов (РСНЭ) (Москва, 2003 и 2005 г), Научных конференциях ИСФТТ РНЦ "Курчатовский институт" (Москва, 2005 и 2006 г), XXXIV Российском совещании по физике низких температур НТ-34 (Ростов-на-Дону – пос Лоо, 2006 г)

<u>Публикации</u>: По материалам диссертации опубликована 21 печатная работа, включая 6 статей в реферируемых журналах и 15 тезисов докладов на российских и международных конференциях

<u>Структура диссертации.</u> Диссертация состоит из введения, пяти глав, основных выводов, заключения и списка цитируемой литературы из 96 наименований Общий объем работы составляет 103 страницы, включая 57 иллюстраций и 7 таблиц

Основное содержание работы

<u>Во введении</u> обосновывается актуальность темы диссертации, формулируется цель работы, а также положения, выносимые на защиту

<u>В первой главе</u> проводится анализ полученных к настоящему моменту результатов исследования ПВ состояния в CeN1, EuCu₂S1₂ и Sm_{1 x}Y_xS Описываются ключевые свойства промежуточновалентного состояния, рассматривается механизм его формирования Формулируются основные проблемы, связанные с исследованием ПВ соединений На сегодняшний день в допированных ПВ соединениях не до конца прояснена роль допирующей примеси, сводится ли она только к созданию внутреннего давления или также к модификации электронной структуры Кроме того, очевиден преимущественно локальный характер ПВ состояния, однако данных об исследовании локальной структуры ПВ соединений весьма немного На основании проведенного анализа формулируются основные задачи для решения в рамках данной работы

<u>Во второй главе</u> описываются методы рентгеновской спектроскопии поглощения – EXAFS и XANES, рассматриваются физические основы обоих методов Формулируются

основные понятия и термины, даются формулы, используемые для моделирования EXAFS-функций Приведена схема экспериментальной установки, описывается процедура записи спектра, его обработки и извлечения структурных параметров Дано описание методов фурье- и вейвлет-анализа, рассмотрены основные источники погрешности в методике EXAFS В заключительной части второй главы рассматриваются наиболее распространенные методы интерпретации XANES-спектров.

Спектры рентгеновского поглощения Sm₁ $_{x}Y_{x}S$ (x=0 17, 0 25, 0 33, 0 45), EuCu₂Si₂ и CeNi были измерены в интервале температур 20-300 К выше L_{III} -Sm, L_{III} -Eu, L_{III} -Ce, K-Y и K-Cu краев поглощения на линиях E4 и A1 синхротронного центра HASYLAB Для низкотемпературных измерений использовался прокачной гелиевый криостат, точность выставления температуры поддерживалась на уровне 0.5 К Обработка спектров проводилась в программной среде VIPER [7]

<u>В третьей главе</u> даны результаты исследования валентного состояния церия в CeNi методом XANES спектроскопии

Рис 1 Моделирование L_{III}-Ce XANES спектра

Рис 2 Изменение формы расчетного *L*_{III}-Ce XANES спектра с температурой

Околокраевая структура спектра поглощения церия в CeN1 представлена на рис 1 сплошной черной линией Доминирующую роль в структуре спектра играет «белая линия» поглощения трехвалентного церия, обозначенная на рисунке 1 буквой А Пик поглощения, соответствующий четырехвалентному церию (пик В на рис 1), смещен в сторону больших энергий и имеет значительно меньшую амплитуду Моделирование околокраевой структуры XANES-спектра суммой аналитических функций дает значение валентности равное 3 1 при комнатной температуре, а в целом температурная зависимость валентности согласуется с результатом, полученным в работе [8] Известно, однако, что значительное влияние на форму спектра поглощения в XANES-области оказывают процессы многократного рассеяния фотоэлектронной волны Кроме того, данные рентгеновской дифракции свидетельствуют о перестройке в структуре ближайшего окружения церия с ростом температуры, что также может воздействовать на чувствительную к таким изменениям форму XANES-спектра Для проверки данного предположения при помощи программы FEFF 8 20 [9] были рассчитаны из первых принципов спектры поглощения L_{III} -Ce³⁺ Расчет проводился для кластера из 90 атомов, построенного с учетом температурных изменений в структуре кристалла Оказалось, что в соответствии с изменением расстояний Ce-Ce и Ce-Ni при понижении температуры происходит увеличение амплитуды расчетный XANES-спектр церия с формальной валентностью 3+ вносит некоторый вклад в максимум B, который ранее приписывался исключительно четырехвалентному церию Определенное в рамках такого подхода значение валентности церия оказывается на ~0 03±0 01 меньше, чем даваемое методом «аналитических функций»

<u>Четвертая глава</u> посвящена исследованию особенностей локальной кристаллической структуры $EuCu_2Sl_2$ и валентности европия в температурном интервале 20-300 К На *L_{III}*-Eu XANES спектре (рис 3) хорошо видно, что при понижении температуры происходит перераспределение интенсивности поглощения в пользу трехвалентного европия

В результате моделирования установлено, что валентность европия растет с ~2 6 при комнатной температуре до ~2 8 при 10К (рис 4), причем скорость изменения валентности

максимальна в области 100-300 К и заметно падает при более низких температурах Такой результат хорошо соответствует данным, полученным ранее методами мессбауэровской и фотоэлектронной спектроскопии, а также результатам EXAFS-работы [10]

Во второй части четвертой главы приводятся результаты исследования локального кристаллического окружения европия и меди в EuCu₂Si₂ методами L_{III^*} Eu и K-Cu EXAFSспектроскопии По данным рентгеноструктурного анализа, первая координационная сфера включает 8 атомов кремния на расстоянии 3 10 Å и 8 атомов меди на расстоянии 3 20 Å Поскольку длина спектра недостаточна для разрешения этих двух групп атомов, моделирование проводилось в двухсферном приближении, суммированием вкладов каждой из сфер в формуле

$$\chi(k) = S_0^2 \sum_{j} \left| f_j(k,\pi) \right| \frac{N_j}{kR_j^2} \sin(2kR_j + \varphi_j(k)) \exp(-2\sigma_j^2 k^2),$$
(1)

где $\chi(k)$ – EXAFS-функция, N_j , R_j и σ_j^2 – координационное число, радиус и среднеквадратичное отклонение от среднего межатомного расстояния, называемое фактором Дебая-Валлера для *j*-й координационной сферы Масштабный множитель S_0^2 учитывает влияние многоэлектронных эффектов Амплитуды и фазы обратного рассеяния $f_i(k,\pi)$ и $\varphi_i(k)$ рассчитывались с использованием программы FEFF8 20

Рис 5 Температурные зависимости длин связей Eu-Cu, Eu-Si и Eu-Eu

Для уменьшения погрешности, связанной с корреляцией параметров, мы фиксировали координационные числа для каждой сферы n=8, таким образом, варьировались параметры радиуса координационной сферы и фактора Дебая-Валлера Аналогичным образом моделировалась вторая координационная сфера вокруг европия, включающая 2 атома кремния (R_{Eu} s₁=3 75 Å) и 4 атома европия (R_{Eu} s₁=4 05 Å) Важность получения параметров

второй координационной сферы весьма высока, тк расстояние Еu-Еu дает непосредственно параметр решетки a, в то время как расстояние Eu-Si позволяет нам, зная структурный множитель z, вычислить параметр решетки с Результаты моделирования для всех четырех расстояний приведены на рис 5, где представлена зависимость длин соответствующих связей от температуры Видно, что ближайшая координационная сфера европия из 8 атомов S1 расширяется с ростом температуры под влиянием увеличения ионного радиуса Еи, причем поведение радиуса сферы с изменением температуры в точности повторяет поведение валентности европия Необычно в данном случае ведет себя сфера из 8 атомов Си, радиус которой должен увеличиваться в соответствии с увеличением объема решетки, однако он остается практически неизменным во всем температурном интервале Длина связи Ец-Ец в точности соответствует изменениям ионного радиуса Eu, а зависимость R_{Eu Eu} от валентности, как и для первой координационной сферы, оказывается линейной Анализ поведения факторов Дебая-Валлера рассмотренных связей при изменении температуры позволил выявить ранее неизвестные закономерности Стоит отметить, что в EXAFS-спектроскопии фактор Дебая-Валлера представляется в виде $\sigma^2 = \sigma_s^2 + \sigma_d^2$, где σ_s^2 - не зависящий от температуры вклад, характеризующий статическое разупорядочение атомов, а σ_d^2 – динамический вклад, отражающий изменение межатомного расстояния вследствие тепловых колебаний Формула (1) работает в приближении гармонического потенциала, а значит, температурную зависимость динамического вклада фактора Дебая-Валлера можно рассчитать в рамках модели Эйнштейна

$$\sigma_d^2 = \frac{\hbar}{2\omega\mu} \coth\frac{\Theta_F}{2T},$$
 (2)

где ω – частота продольных колебаний связи пары атомов поглотитель-рассеиватель, $\mu = m_1 m_2 / (m_1 + m_2)$ – приведенная масса атомной пары, а $\Theta_E = \hbar \omega / k_b$ - температура Эйнштейна, характеризующая жесткость связи Определенная таким образом жесткость связи Eu-Cu оказывается необычно малой, а статический фактор Дебая-Валлера, напротив весьма велик

Ближайшее кристаллическое окружение представлено тремя координационными сферами Cu-4*S1, Cu-4*Cu, Cu-4*Eu, которые, по данным рентгеноструктурного анализа, должны располагаться на расстояниях 2 40, 2 87 и 3 20 Å соответственно Поскольку выделить вклад от каждой из сфер не представляется возможным, моделирование проводилось в трехсферном приближении В ходе моделирования варьировались значения радиуса координационной сферы и фактора Дебая-Валлера, таким образом, с учетом начального сдвига по энергии ΔE_0 количество независимых параметров составило 7, в то время как максимальное их число $N=2\Delta k\Delta r/\pi$ +2 в соответствии с теоремой Найквиста [11] в нашем случае равнялось 19 Видно, что, несмотря на увеличение объема ячейки, подтвержденное как данными рентгеновской дифракции, так и результатами L_{III} –Eu EXAFS-анализа, длины связей, образуемых атомами меди, остаются практически постоянными (рис. 6).

Ключом

противоречия

к

температурных зависимостей факторов Дебая-Валлера (таблица 1) Видно, что статический фактор Лебая-Валлера связи Cu-Cu. максимален лпя а Эйнштейня температура Θe. характеризующая жесткость связи. напротив. Значительный минимальна. разброс в расположении атомов меди может быть причиной, по которой мы не видим изменений длины связи, это может

разрешению

может

возникшего

анализ

стать

Еu, Cu-Cu, Cu-Si видим изменении длины связи, это мол также объяснять температурные особенности коэффициента термического расширения

	Eu-St	Eu-Cu	Eu-Eu	Cu-Si	Cu-Cu	Cu-Eu
Θ _F , K	313K	174K	155K	330K	179K	183K
$\sigma^2_{crat}, Å^2$	0 00046	0 00158	0 0016	0 00027	0 0015	0 00099

Таблица 1	. Темпе	ратура Э	йнштейна и	степень п	азупо	зялочения	в ЕиСи	Sb
Two minutes i			TITTELL CONTINUE TO	vivii vii p		Subtraction of the second		2

Таким образом, аномальные решеточные свойства EuCu₂Si₂ объясняются не только влиянием промежуточновалентного состояния в атомах европия, но и разупорядочением в медной подрешетке Кроме того, относительное изменение расстояний может приводить к появлению локальной деформации в решетке, связанных с выходом атомов меди из плоскости a/2.

<u>В пятой главе</u> приводятся результаты исследования особенностей локальной электронной и кристаллической структуры $Sm_{1,x}Y_xS$ Для анализа локальной структуры $Sm_{1,x}Y_xS$ использовалась комбинация методов рентгеновской спектроскопии поглощения XANES и EXAFS, позволяющих одновременно исследовать валентное состояние и параметры локального кристаллического окружения интересующих ионов Результаты анализа XANES спектров представлены на рис 8 Видно, что при T=300 К происходит монотонный рост валентности самария с увеличением содержания интрия Увеличение

температуры с 20 до 300К также приводит к росту валентности, причем наиболее сильно (с 2 36 до 2 49) валентность самария изменяется в Sm_{0.67}Y_{0.33}S Для других составов изменение валентности менее выражено и составляет $\delta V = 0.09$ при x=0.45, 0.06 при x=0.25 и 0.04 при x=0.17.

Рис / L_{ttr} -Sm XANES-спектры для ооразцов Sm_i $_{x}$ Y_xS различной стехиометрии при T=20 и 300 K

Рис 8 Температурная зависимость валентности самария в Sm_{1 x}Y_xS

Данные о локальной кристаллической структуре Sm₁, Y₂S были получены в ходе анализа L_{III} -Sm и K-Y EXAFS-спектров. Атомы самария и иттрия располагаются в решетке на эквивалентных позициях, поэтому особый интерес представляет сравнительный анализ их локального окружения EXAFS-функции $\gamma(k)k^2$ и их фурье-образы для L_{III} -Sm и K-Y краев поглощения представлены на рис 9 и 10 соответственно Положение пика на фурьеобразе, отвечающего первой координационной сфере (6 атомов серы) сдвинуто в сторону меньших r для K-Y края, что свидетельствует о меньшей длине связи Y-S по сравнению с Sm-S При моделировании фильтрованной EXAFS-функции для первой сферы окружения самария было проверено предположение о наличии в сфере двух расстояний соответствующих ионным радиусам Sm²⁺ и Sm³⁺, следующего из наличия в XANESспектре двух краев поглощения Однако моделирование показало наличие лишь одного расстояния, что является прямым независимым доказательством однородного характера промежуточновалентного состояния в Sm_{1-x}Y_xS Хотя на XANES-спектре мы видим две различных валентных конфигурации, частота «переключения» между ними значительно превышает фононную, таким образом, соответствующее изменение не успевает отразиться на параметре решетки, который в итоге фиксируется в среднем положении Возникающее в данном случае напряжение решетки может объяснять аномалии фононных спектров, описанные в работе [12]

Рис. 10 Модуль фурье-образа $\chi(k)k^2$ выше L_{III} -Sm (слева) и K-Y (справа) краев поглощения))

Амплитуда двойного пика в области 3.5 < r < 4.5 Å (область II на рис. 10), соответствующего второй координационной сфере – 12 тяжелых атомов – уменьшается с ростом концентрации Y. Поскольку вторую координационную сферу формируют атомы разных типов, чрезвычайно интересными представляются результаты вейвлет-анализа, который позволяет визуально разрешать вклады от элементов разной массы (рис. 11). На графике вейвлет-преобразования *K*-Y EXAFS отчетливо видны два пика, имеющие близкие значения радиуса и хорошо разрешенные в *k*-пространстве, соответствующие Y-Y и Y-Sm сферам. Поскольку пик в области меньших *k* смещен также и в сторону меньших значений радиуса, можно сделать вывод о том, что длина связи Y-Y окажется меньше, чем Y-Sm. В то же время на вейвлет-образе L_{III} –Sm EXAFS такой пик всего один. Внимательное изучение зависимостей амплитуд обратного рассеяния от волнового вектора показало, что

вклад от Sm-Sm сферы слабо выражен вследствие малой длины спектра. К сожалению, в настоящий момент вейвлет-преобразование может использоваться лишь для качественного анализа EXAFS-спектров, но даже та информация, которую можно получить с его помощью, оказывается весьма полезной.

Рис. 11 Результаты вейвлет-преобразования для второй координационной сферы экспериментальной EXAFS-функции $\chi(k)k^2$ для K - Y (слева) и L_{III} -Sm (справа) краев поглощения в Sm_{0.67}Y_{0.33}S при T=20 K

Полученные в результате моделирования параметры локального окружения самария и иттрия представлены на рис. 12. EXAFS-анализ показал монотонное уменьшение длины связи Sm-S как ростом содержания иттрия, так и с температурой. Аналогичное уменьшение межатомных расстояний наблюдается также для связей Sm-Sm и Y-Sm, что соотносится с наблюдением отрицательного коэффициента теплового расширения, связанного с уменьшением ионного радиуса самария вследствие роста его валентности. При этом длина связей Y-S оказывается значительно меньше длин связей Sm-S в каждом из исследованных составов и практически не зависит от температуры. Приведенные данные указывают на существенную локальную деформацию решетки SmS при допировании иттрием, вызывающую локальное понижение симметрии. Действительно, ионы серы, находящиеся между ионами самария и иттрия, смещены от среднего положения к ионам Y³⁺ на 0.3-0.8 Å в зависимости от содержания иттрия.

Таблица 2. Температура Эйнштейна и степень разупорядочения в Sm1-xYxS

		Θ _E , K			$\sigma^2_{crat}, Å^2$		
x	Sm-S	Sm-Sm	Y-S	Y-Sm	Sm-S	Sm-Sm	
0.17	243	122	320	146	0.0035	0.0039	
0.25	251	114	297	149	0.0039	0.0061	
0.33	297	120	319	172	0.0019	0.0027	
0.45	313	110	299	172	0.0029	0.0055	

Рис 12 Температурные зависимости длин связей Sm-S, Y-S (слева) и Sm-Sm (справа)

Рис 13 Температурная зависимость факторов Дебая-Валлера (сплошными линиями показаны данные расчета по модели Эйнштейна) На вставке приведены значения статического фактора Дебая-Валлера для образцов различной стехнометрии

Температурные зависимости факторов Дебая-Валлера представлены на рис 13, результаты моделирования в рамках модели Эйнштейна приведены в Таблице 2 Видно, что жесткость связи Sm-S, характеризуемая температурой Эйнштейна, монотонно возрастает с ростом содержания иттрия, что согласуется с отмеченным выше уменьшением ее длины Жесткость связи Y-S с ростом содержания иттрия остается практически неизменной Обнаружено, что состав Sm_{0.67}Y_{0.33}S имеет наименьшие локальные статические искажения локальной решетки, характеризуемые минимальным значением статического фактора Дебая-Валлера связей Sm-S и Y-S Это указывает на наибольшую степень упорядоченности решетки Sm_{1.x}Y_xS при концентрации иттрия x=0.33

Действительно, для решетки типа NaCl число ближайших соседей в подрешетке самария равно 12, и при x=0.33 достигается практически одинаковое локальное окружение каждого из ионов самария, состоящее из 4 ионов иттрия и 8 ионов самария Естественно, что моделирование искажений решетки при допировании показывает, что этому составу соответствует минимальная степень локальной деформации

Рис 14 Зависимость длин связей Sm-S от валентности самария (слева) и от степени электронного заполнения 5*d*-зоны (справа) для образцов различной стехиометрии

При сопоставлении данных XANES- и EXAFS-анализа Sm_{1 x}Y_xS обнаружено нарушение закона Вегарда, проявляющееся не только в нелинейной зависимости параметра решетки от валентности, но также в неоднозначности этой зависимости одному значению валентности самария соответствуют два различных значения параметра решетки в образцах x=0 25 и x=0 33 Для проверки предположения о том, что подобная двузначность является следствием сдвига уровня Ферми в сторону больших энергий при электронном допировании SmS ионами Y³⁺, были построены графики зависимости расстояний Sm-Sm и Sm-S от суммарного электронного заполнения 5*d*-зоны за счет вклада от частичной делокализации 4*f*-электронов самария и от *d*-электронов иттрия

Расчет заполнения 5д-зоны проводился по формуле

$$n_d = l^* x + (l - x)^* (3 - V),$$
 (5.1)

где слагаемое l^*x соответствует заполнению 5*d*-зоны одним электроном от каждого атома примеси иттрия с концентрацией *x*, а $(1-x)^*(3-V)$ (*V*-значение валентности самария) соответствует вкладу Sm³⁺

Как видно из приведенных на рис 14 графиков, отмеченная выше двузначность пропадает Зависимость расстояния Sm-S от электронного заполнения 5*d*-зоны, характеризующая изменение ионного радиуса самария, приближается к линейному

закону, однако линейный закон для зависимости параметра решетки (Sm-Sm) не восстанавливается даже с учетом вклада от *d*-электронов иттрия По-видимому, последнее обстоятельство связано с понижением локальной симметрии решетки

Рис 15 Зависимость диапазонов изменения валентности Sm и длины связи Sm-S от концентрации примеси иттрия

Рис 16 Плотность состояний на 4*f*-уровне самария, описываемая функцией Лоренца для образца x=0 33 и гауссовой функцией для остальных образцов

Корреляция особенностей локальной электронной и кристаллической структуры промежуточновалентного состояния в $Sm_{1x}Y_xS$ проявляется в виде абсолютно идентичных зависимостей изменений валентного состояния самария $\delta V = V(300K) - V(20K)$ и изменений длины связи Sm-S $\delta l = l(300K) - l(20K)$ в исследованном температурном интервале 20-300K (рис 15) При этом важно отметить, что указанные изменения максимальны для образца $Sm_{0.67}Y_{0.33}S$, имеющего наиболее упорядоченную на локальном уровне решетку

На основе полученных результатов предложена модель взаимосвязи валентного состояния самария с локальными особенностями решетки $Sm_{1-x}Y_xS$ для определения основных характеристик ПВ состояния Поскольку валентность самария определяется степенью перекрытия 4*f* состояний со свободными состояниями вблизи уровня Ферми, то она должна зависеть как от глубины залегания 4*f*-уровня, так и от его ширины Для наиболее упорядоченной решетки *x*=0 33, где валентность каждого из ионов самария практически одинакова вследствие одинакового локального окружения, полуширина 4*f* уровня Γ_f минимальна и совпадает с полушириной 4*f* уровня отдельно взятого иона В этом случае уширение однородно и описывается функцией Лоренца (рис 16) При отклонении от этой концентрации каждый из ионов самария имеет несколько отличное локальное окружение, что приводит к интегральному неоднородному уширению 4*f*-уровня, которое теперь описывается функцией Гаусса В результате одинаковое размытие k_bT уровня Ферми Е_F

при повышении температуры от 20 до 300 К вызывает разное изменение степени его перекрытия с 4f-уровнем в зависимости от глубины залегания $\Delta E = E_F \cdot E_0$ и полуширины Γ_f 4f-уровня Для минимальной полуширины 4f уровня (x=0 33) изменение степени перекрытия максимально, что и обуславливает максимальное изменение валентности с температурой для данного состава Минимальные изменения валентности соответствуют составам x=0 25, x=0 17, для которых локальные искажения решетки максимальны На основании предложенной модели и экспериментально полученных температурных зависимостей валентности самария была получена оценка таких важных характеристик IIB состояния как глубина залегания ΔE и полуширина Γ_f 4f-уровня (см таблицу 3)

Таблица 3 Параметры 4*f*-уровня Sm

	x=0 17	x=025	x=0 33	x=0 45
Γ ₆ 3Β	0 37	0 22	0 09	013
<i>∆E</i> , эВ	0 12	0 05	0 02	-0 01

Полученные значения полуширины 4*f*-уровня по порядку величины соответствуют оценке ширины гибридизованной *f*-зоны $10^2 < \Gamma_f < 10^1$ эВ, приведенной Вармой в обзоре [13], а также более поздним теоретическим оценкам (например [14])

В <u>Заключении</u> приводятся результаты сравнительного анализа температурных зависимостей валентности Ce, Sm, Eu, дается объяснение разной направленности этих зависимостей, формулируются основные выводы работы

Общие выводы по диссертации.

1 Методом XANES-спектроскопии исследовано валентное состояние церия в CeNi Обнаружено существенное влияние эффектов многократного рассеяния на форму L_{III}-Ce XANES-спектра, что позволило уточнить как абсолютное значение валентности церия, так и вид его температурной зависимости

2 Методами XANES и EXAFS спектроскопии определены температурная зависимость валентности европия в EuCu₂Si₂ и параметры локальной кристаллической структуры Обнаружено, что статическое разупорядочение в подрешетке меди приводит к уменьшению жесткости связей, формируемых атомами меди

3 Методом XANES-спектроскопии определена зависимость валентности самария в $Sm_{1-x}Y_xS$ (x=0 17, 0 25, 0 33, 0 45) от температуры и допирования иттрием Обнаружен монотонный рост валентности с температурой (20-300К), а также с ростом концентрации иттрия при T>50K При T<50K монотонность зависимость валентности самария от концентрации примеси нарушается

4 С помощью EXAFS-спектроскопии изучены параметры локальной кристаллической структуры промежуточновалентных соединений Sm₁ _xY_xS Длины связей Sm-S оказываются значительно больше, чем Y-S и монотонно уменьшаются как с ростом температуры и с увеличением концентрации иттрия, что приводит к локальной деформации кристаллической решетки Обнаружено, что состав Sm_{0 67}Y_{0 33}S имеет минимальные локальные искажения решетки, характеризуемые минимальным значением статического фактора Дебая-Валлера

5 Получено прямое независимое доказательство существования однородного ПВ состояния в Sm_{1 x}Y_xS

6 Совместный анализ данных EXAFS- и XANES- спектроскопии в Sm_{1 x}Y_xS позволил выявить нарушение закона Вегарда – обнаружена двузначность в зависимости объема ячейки от валентности самария Установлено, что данная двузначность связана с заполнением *d*-электронами иттрия зоны проводимости

7 Установлена корреляция между локальными кристаллическими и электронными свойствами $Sm_{1-x}Y_xS$ Получена оценка энергетической ширины *f*-уровня $Sm \Gamma_f$ и его глубины залегания ΔE_f

8 Разная направленность температурных зависимостей валентностей Се, Еu и Sm объяснена исходя из предположения о том, что при понижении температуры система стремится подавить формирование магнитных моментов изменением степени *f-d* гибридизации в пользу немагнитного состояния

Цитированная литература

- [1] Хомский ДИ Проблема промежуточной валентности, Успехи физических наук, том 129, вып 3, стр 443 (1979)
- [2] P A Alekseev, V N Lazukov, J M Mignot and I P Sadikov Neutron scattering studies of intermediate-valence compounds, Physica B, 34, p 281 (2000)
- [3] ВС Оскотский, ИА Смирнов, Фазовый переход полупроводник металя в редкоземельных полупроводниках (монохалькогениды самария), Успехи Физических Наук, Том 124, вып 2, стр 241 (1978)
- [4] В В Каминский, А В Голубков, Л Н Васильев, Дефектные ионы самария и эффект генерации электродвижущей силы в SmS, ФТТ, том 47, вып 7, стр 1501 (2005)
- [5] P W Anderson, Valence instabilities and related narrow-band phenomena, [proceedings of an international conference on valence instabilities and related narrow-band phenomena held at the University of Rochester, Rochester, New York], p 135 (1977)

- [6] F Mehran, K W H Stevens, R S Title, and F Holtzberg, Exchange interaction of Eu²⁺ -Sm²⁺ and Mn²⁺ -Sm²⁺ in samarium chalcogenides observed by electron paramagnetic resonance, Phys Rev Lett, 27, p 1368 (1971)
- [7] K V Klementiev, VIPER for Windows, freeware, J Phys D, 34, p 209 (2001)
- [8] V N Lazukov, E V Nefeodova, V V Sikolenko, U Staub, P A Alekseev, M Braden, K S Nemkovski, C Pradervand, I P Sadikov, L Sodeiholm, N N Tiden, *Lattice anomalies* in CeNi unstable valence compound, Appl Phys A, 74 [Suppl], p S559 (2002)
- [9] Ankudinov A L, Ravel B, Rehr J J, Conradson S D, Real space multiple scattering calculation and interpretation of X-ray Absorption Near Edge Structure, Phys Rev B, 58, p 7565 (1998)
- [10] T K Hatwar, Rh Nayak, LB Padalia and M N Ghatikar, E V Sanipathkumaran, L C Gupta and R Vljayaraghavan, X-Ray absorption spectroscopic study of mixed valence systems EuCu₂St₂, YbCu₂St₂ and Sm₄Bt₃, Solid State Commun, 34, p 617 (1998)
- [11] Stern E A, Number of relevant independent points in X-ray absorption fine structure, Phys Rev B, 48, p 9825 (1993)
- [12] H A Mook and R M Nicklow, T Penney, F Holtzberg, and M W Shafer, Phonon dispersion in intermediate-valence Sm_{0.75}Y_{0.25}S, Phys. Rev. B, 18, p. 2925 (1978)
- [13] C M Varma, Mixed-valence compounds, Rev Mod Phys, 48, p 219 (1976)
- [14] V N Antonov and B N Harmon, A N Yaresko, Electronic structure of mixed-valence semiconductors in the LSDA+U approximation 1 Sm monochalcogenides, Phys Rev B, 66, p 165208 (2002)

Список публикаций по теме диссертации

Статьи в реферируемых журналах

- ПА Алексеев, Р В Черников, Р Кортес, В Н Лазуков, А П Менушенков, К вопросу о валентном состоянии церия в CeNi анализ данных XANES- спектроскопии, Поверхность, 11, стр 105 (2003)
- 2 P A Alekseev, R V Cheinikov, K V Klementiev, V N Lazukov and A P Menushenkov, *XAFS-spectroscopy of EuCu₂Si*₂, Nuclear Instruments and Methods in Physics Research A, 543, p 202 (2005)
- 3 P A Alekseev, R V Chernikov, A V Golubkov, K V Klementiev, A P Menushenkov and K S Nemkovsky, XAFS spectroscopy of the mixed valent Sm₁ xY_xS, Nuclear Instruments and Methods in Physics Research A, 543, p 205 (2005)
- 4 АП Менушенков, РВ Черников, ВВ Сидоров, КВ Клементьев, ПА Алексеев, АВ Рыбина, Взаимосвязь локальной электроннои и локальной кристаллическои

структур промежуточновалентного Sm₁, Y_xS, Письма в ЖЭТФ, 84, в 3, стр 146 (2006)

- 5 P A Alekseev, J -M Mignot, E V Nefedova, K S Nemkovski, V N Lazukov, N N Tiden, A P Menushenkov, R V Chernikov, K V Klementiev, A Ociai, A V Golubkov, R I Bewley, A V Rybina, I P Sadikov, Magnetic spectral response and lattice properties in mixed-valence Sm_{1 x}Y_xS solid solutions studied with X-ray diffiaction, X-ray absorption spectroscopy, and inelastic neutron scattering, Phys Rev B, 74, p 035114 (2006)
- 6 АП Менушенков, РВ Черников, КВ Клементьев, ПА Алексеев, ВВ Сидоров, АВ Рыбина, Низкотемпературные особенности токальной структуры Sm_{1 x}Y_xS, ЖЭТФ, 132, в 1, стр 114 (2007)

Материалы конференций и другие работы

- 1 АП Менушенков, Р В Черников, R Cortes, П А Алексеев, В Н Лазуков, К вопросу о валентном состоянии церия в CeNi анализ данных XANES- спектроскопии, Материалы XIV Российской конференции по использованию синхротронного излучения, Новосибирск, 15-19 июля, 2002, стр 53
- 2 A P Menushenkov, R V Chernikov, P A Alekseev, V N Lazukov, R Cortes, On the cerum valence state in CeNi XANES data analysis, Abstracts of the 12-th Int Conf on Xray Absorption Fine Structure, Malmo, Sweden, June 22-27, 2003, p 252
- 3 АП Менушенков, Р В Черников, R Cortes, П А Алексеев, В Н Лазуков, Локальная структура CeNi и Sm(Y)S, Тезисы докладов IV Национальной конференции по применению рентгеновского, синхротронного излучений, нейтронов и электронов для исследования материалов, Москва, 17-22 ноября, 2003, стр 417
- 4 A P Menushenkov, R V Chernikov, K V Klementiev, P A Alekseev, K S Nemkovsky, V N Lazukov, *XAFS-studies of mixed-valence* $Sm_{1x}Y_xS$ Annual Report, HASYLAB, DESY, Hamburg, Germany, 2003, p 545
- 5 АП Менушенков, Р В Черников, К В Клементьев, П А Алексеев, К С Немковский, А В Голубков XAFS – спектроскопия про межуточновалентного $Sm_{1x}Y_xS$ Digest Reports of the XV International Synhrotron Radition Conference, Novosibirsk, Russia, July 19-23, 2004, р 78
- 6 АП Менушенков, Р В Черников, К В Клементьев, П А Алексеев, В Н Лазуков *XAFS – спектроскопия EuCu₂Si*₂ Digest Reports of the XV International Synhrotron Radition Conference, Novosibirsk, Russia, July 19-23, 2004, р 80
- 7 ПА Алексеев, Ж-М Миньо, КС Немковский, ЕВ Нефедова, АВ Кузнецов, АП Менушенков, АВ Грибанов, Р Бьюли, РВ Черников, Особенности физических свойств EuCu₂Si₂, Сборник аннотаций Научной конференции ИСФТТ РНЦ

"Курчатовский институт", Москва, 22-24 марта, 2005, стр 82

- 8 РВ Черников, АП Менушенков, ВВ Сидоров, КВ Клементьев, ПА Алексеев, КС Немковский, ЕВ Нефедова, Локальная структура и динамика решетки EuCu₂Si₂, Тезисы докладов V Национальной конференции по применению рентгеновского, синхротронного излучений, нейтронов и электронов для исследования наноматериалов и наносистем РСНЭ НАНО-2005, Москва, 14-19 ноября, 2005, стр 397
- 9 АП Менушенков, РВ Черников, КВ Клементьев, ПА Алексеев, ЕВ Нефедова, КС Немковский, Особенности локальной структуры и спектра магнитных возбуждений Sm₁, Y_xS, Тезисы докладов V Национальной конференции по применению рентгеновского, синхротронного излучений, нейтронов и электронов для исследования наноматериалов и наносистем РСНЭ НАНО-2005, Москва, 14-19 ноября, 2005, стр 371
- 10 A P Menushenkov, R V Chernikov, K V Klementiev, P A Alekseev, E V Nefedova, V V Sidorov, K S Nemkovski, $Sm_1 xY_xS$ local structure properties, Annual Report, HASYLAB, DESY, Hamburg, Germany, 2005, p 685
- 11 АП Менушенков, Р В Черников, К В Клементьев, П А Алексеев, В В Сидоров XAFS спектроскопия Sm₁ xY_xS Сборник аннотаций Научной конференции ИСФТТ РНЦ "Курчатовский институт", Москва, 11-13 апреля, 2006, стр 104
- 12 A P Menushenkov, R V Chernikov, V V Sidorov, K V Klementev, P A Alekseev, V N Lazukov, K S Nemkovski, E V Nefedova, Correlation of the local electronic and crystalline structure in the mixed-valent rare-earth compounds, Digest Reports of the XV International Synhrotron Radition Conference, Novosibirsk, Russia, July 10-14, 2006, p 69
- 13 R V Chernikov, A P Menushenkov, V V Sidorov, K V Klementev, P A Alekseev, K S Nemkovski, E V Nefedova, *Local structure peculiarities of EuCu₂Si₂ XAFS data analysis*, Abstracts of the 13-th Int Conf on X-ray Absorption Fine Structure, Stanford, USA, July 9-14, 2006, TU-PO 67, p 123
- 14 A P Menushenkov, R V Chernikov, V V Sidorov, P A Alekseev, E V Nefedova, K S Nemkovski, K V Klementev, XAFS of homogeneous mixed valent state in Sm(Y)S, Abstracts of the 13-th Int Conf on X-ray Absorption Fine Structure, Stanford, USA, July 9-14, 2006, WE-PO 85, p 233
- 15 АП Менушенков, РВ Черников, КВ Клементьев, ПА Алексеев, ВВ Сидоров, АВ Рыбина, Низкотемпературные особенности локальной структуры Sm_{1-x}Y_xS, Труды XXXIV Российского совещания по физике низких температур НТ-34, г Ростовна-Дону – пос Лоо, 26-30 сентября, 2006, Т 1, стр 15

Заказ № 92/05/08 Подписано в печать 13 05 2008 Тираж 100 экз Усл п.л. 1,25

ООО "Цифровичок", тел (495) 797-75-76, (495) 778-22-20 www cfr ru, e-mail info@cfr ru